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Causality and the radiation condition 

John V. W E H A U S E N *  
Department of Naval Architecture and Offshore Engineering, University of California, Berkeley, California, USA 

Abstract. For a hydrostatically stable floating body making small oscillations about a fixed position as a result of 
external forces and moments, it is shown that the radiation condition implies that the motion at time t depends only 
upon the forces and moments at times ~<t, i.e. that the future does not determine the present. 

We wish to consider here one aspect of the motion of a body floating in a heavy fluid. The 
mot ions  will be assumed to be small enough so that the equations may be linearized. In 
order  to describe the motion of both body and fluid, we shall adopt  a r ight-handed 
coordinate  system with O z  directed against gravity, Ox to the right, and O y  into the paper .  
The  plane O x y  lies in the undisturbed free surface. The small excursions that the body makes  
about  its fixed equilibrium position will be denoted by 19/1, . . . , O~6, where a 1, a2, a 3 represent  
translational displacements and an, a 5, o~ 6 angular ones. The dynamical constants of  the body 
will be denoted by mik where ml~ = m22 = m33 = m, the mass of the body,  and 

2 

mik = p[r  6i~ - xixk] d V  , i , k = 4 , 5 , 6 ,  

where  p is the density distribution of the body,  r 2 = xixi ,  and the integral is taken over  the 
body.  All o ther  m/~ are zero. In the equations to be given below Cik are the hydrostatic 
coefficients,/xik are the added masses as defined by Cummins (1962) (i .e. ,  the added masses 
at infinite frequency),  and L~k(t ) is a weighting function defined in terms of the velocity 
potent ial  for the fluid motion.  Its definition as well as those of [J'ik and C~k may be found in 
Wehausen (1971 or 1967). An important  proper ty  of Lik is that it is zero for t < 0. Let  Xs(t )  

be the force (i = 1, 2, 3) or momen t  (i = 4, 5, 6) to which the body is subjected. X i ( t  ) may be 
a result of oncoming waves, of wind, or of  some other exterior forcing mechanism. We 
suppose X~(t) to be absolutely integrable. 

In order  to accommodate  the possibility that only certain modes of motion are allowed, we 
shall suppose that the subscripts i, j or k may be restricted to some subset A of the integers 
1 , 2 , . . . ,  6. Then the linearized equations of motion for the body are as follows (see 
Wehausen,  loc. cit.): 

(mik + /Zik)&k(t ) + Cika k + ~ Lik(t  -- r)t i~(r)  d~" = Xi( t )  , i, k ~ A . (1) 

Repea t ed  indices are summed over  the integers belonging to A, non-repeated indices take on 
successively the integers in A. 

The  equations are a natural candidate for a Fourier  or Laplace transform. We shall use the 
Fourier  transform: 

*Editorial member from 1967-1986. 
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f_° X~(t) = "Yk (0-) e-i~' do ' .  (2) 

After  taking the Fourier transform of the equations of motion, we find the following: 

{--0-2[mik q- ]J'ik(0-)] + Cik - - i 0"A ik (0 - ) }~k (0 - )  = S i ( 0 - )  , i, k E A ,  (3) 

where 

• -1 f O  id.ik(0- ) __ i.£ik(OO ) ql- 10" ~ik(0") = E l k (T )  eiar d r .  (4 )  

It follows from this that tZik(--0") = /Xik(0" ) and Zik(--0" ) = Aik(0" ). We introduce the following 
notation: 

1~1i k 2 l~ik 0"~ik(0") Sik l~4ik--i~[ik" ( 5 )  = -0-  [mik +/zi~(o-)] + Cik, = , - - ~  

The transformed equation (3) then reads: 

Lkak = f ( i ,  i, k E Z ,  (6) 

and its solution is evidently 

N 
~ = TikX ~ , i, k E A , (7) 

where T =  S-~, i.e. T j j k  = ~ik" It now follows easily from the above and from known 

properties of Lik that Lk ( -0" )=~k(0" ) ,  L i  = Lk and similarly for Tik- Because of 
this property of Tik we find 

T/k(t) = f_~ Tik(0") e - ~ '  do" 

= f o  [Ti,(0") ei~' + Ti,(0") e-i~'] do-, 

i.e. Tik(t ) is real. Even though Sik is independent of the choice of A, this is not true for Tik or 
T~, which will be different for different choices of A. Although it might be helpful to 
indicate this, we have not done so in order to avoid a cluttered notation. 

Having found ~(0-) above, we may now calculate ai(t): 

ai(t ) = 4(0") e -i~t do" = T, kX k e -i~' do" 

£ il ] _ 1 ~'ik(O') e -i '~t Sk('r ) e i'~T d ' r  do"  
27r L~-~ 

£ - 27r -= dr  Xk(r ) do" f,~(0") e -'~('-¢) 

_ 1 f~  Xk(.c)Tik( t -  r) dr  
2~" 

= - - 1  f~  r i k ( z ) X k ( t _ r ) d r ,  i, k E A .  
2~r 

(8) 
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The preceding development  is well known and has been reviewed in order  to display the 
last formula for Oti(t), for this formula seems to indicate that a~ at time t depends upon the 
value of the exciting force X k at all future as well as all past times unless we can show that 
Tik(t ) = 0 for all t < 0. It is this problem that we wish to address and to which we now turn. 

First we shall show that the desired property of T~k is equivalent to a certain property of 
T~k" The reasoning is well known and can be found in books on control theory (e.g., 
Solodovnikov,  1960, pp. 24-28).  Consider the transform 

1 F Tik(0-) = ~ ~ Tik(t ) e i~t d t .  

Al though heretofore  we have thought of 0- as being real, we shall now take it to be complex. 
T~k(0-) is then defined in the whole 0--plane. Let  us write 0- = p  e ~°= p(cos 0 + i sin 0). 
Consider now 

fc  | ~ io e-iRt cos 0 eRr sin ORi e i0  
i" 

Tgk(0-) e-i~t do- = T~k(g e ) dO J 

where the path of integration is either along the semicircle C+ : p = R, 0 < 0 < ~-, or the 
semicircle C_: p = R, 2~-> 0 > 7r. These paths are now completed by paths along the real 
axis from - R  to R. Evidently, as R--* 00 the integral along C+ converges to zero if t < 0 and 
that along C_converges to zero if t >  0. It then follows that for t < 0 

Tik(t)=limR_oo[~R_RT"ik(0")e-i~td0"+fc+7"ik(0-)e-i~td0-1.  

I f  7"ik is analytic in the upper  half-plane, then T~(t)  = 0 for t < 0. The converse of this is also 
true,  i.e. if Tik( t )= 0 for t < 0, then Tik(0") is analytic in the upper half-plane. 

Our  problem has now been transformed to that of showing that T~k is analytic in the upper  
half-plane. Since T = S-1, we shall search for an equivalent property of S. Let  Pik be the 
cofactor  of the element Sik in the determinant det S where i, k E A. Then it is known that 

Tik = Pki/det  S , i, k E A . (9) 

As we shall see, S and hence Pig are analytic in the upper half-plane. Thus what remains to 
be shown is that det S has no zeros in the upper half-plane. How do we know that S is 
analytic in the upper half-plane? From the earlier formulas (4) and (5) defining/Xik , )rig and 
Sik it follows that 

fO ~ m 2 ~k  = -- 0"2 Lik(t  ) e i't dt + cik 0" [mik + ~ik(W)] , i, k E A .  (10) 

It has already been mentioned that Lik(t ) = 0 for t < 0, so that its transform is analytic in the 
upper  half-plane. Since the other terms in the equation above are obviously analytic, Sik is 
also. We recall that S is a matrix of order  between 1 and 6, depending upon A. It will be one 
of the main-diagonal matrices of the matrix that one would obtain when A consists of all the 
integers 1 to 6. 

We turn now to det S. The matrix S = / ~  - i.~ is symmetric but is not hermitian, so that no 
easy conclusion can be drawn from the fact of symmetry alone. However ,  the matrix 
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S~* = [AI(¢) -i/V(¢)][/~r(¢) + iNr(¢)] (11) 

is hermitian, and we shall be able to exploit this fact. H e r e / ~  r _ is the transpose of/1~ and is, 
of  course, equal t o / ~  when M is symmetric. We write S* = ~r, a usual notation. We note 
that the product  above is hermitian even when S is not symmetric. 

Associated with any hermitian matrix Hik = ISIki, i, k = 1 . . . . .  n, is a so-called hermitian 
form 

Q = xiHik:~ k 

where repeated indices are to be summed from 1 to n. It is easy to show that Q = Q, so that 
Q is real. Within this class of forms one distinguishes positive (negative) definite and 
non-negative (non-positive) definite forms. A non-negative definite form is one such that 
Q/> 0 for any choice of X l , . . . ,  xn; a positive definite form is one such that Q > 0  for any 
choice of x 1 . . . .  , x n except x~ = x 2 . . . . .  x n = 0. Analogously for the terms in parentheses. 
A classical theorem about hermitian forms states that such a form is positive definite if and 
only if all the determinants formed with the first minors along the main diagonal are positive, 
i .e. ,  

HH H12 
Hi1 > 0 ,  H21 H2 2 > 0  . . . .  

n l  1 
9 ,  

Hn 1 

• " " B i n  

• " " . 2 o  

• . .  

> 0 .  

It then follows that all main-diagonal minors are positive. There  is an analogous theorem for 
negative definite forms and a somewhat more complicated one for non-negative and 
non-positive definite forms. 

Consider now the special hermitian form 

Q = x i S i j S k j X  k ~- x i [ M i j ( o - )  - iN i j (o - ) ] [~ lk j (O-  ) -~- i31kj(tr)]~ k 

ixi[l~lq(o. ) _ . ~  2 = ,Nq(o')] I i>0,  i, j, k~E A .  (12) 
J 

Evidently Q is a sum of squares and hence Q I> 0. Suppose that for some particular 
o-= s + ir, r >  0, there exists a set of complex numbers x~, i E A, not all zero, such that 
Q = E j = 0 .  Then 

Xi[l~i](O" ) -- ifi/q(o-)] = x,Sq = O, i, j E A ,  

and also 

2,[/14q(o') + iNq(o')] = .f, Sq = O, i, j E A .  

The following quadratic forms are then also zero: 

G = o, = o. (13) 

Interchanging i and j in the second equation, we obtain 
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x,Sj,(o-)2 t = 0 .  (14) 

A f t e r  first adding and then subtract ing (13) and (14) we obtain:  

Xi(~(O') + g t i ( O ' ) } ~  = O ,  (15) 

Xi{gi j (Or ) -- S j i (o ' ) }x j  = O,  i, j ~ A .  (16) 

We now subst i tute the expression f rom (10) into (15) and (16): 

f/ git(t)ei¢tdt-w-cr2 fo gti(t)e-i¢'dt  

2 _ "}- Cij ~ Cji -- (7" [mit +/zit(oo)] + or2[mji +/zti(~)] = 0 ,  (17) 

where  the top signs go with (15) and the b o t t o m  ones with (16). I f  we now let o- = s + ir, 

equa t ion  (17) becomes  the following: 

( fo f0 X i --(S 2 -- r 2 + 2 irs) Lit(t ) e ist e - ' t  dt  -7- (s 2 - r 2 - 2irs) Lji(t ) e-iSt e-'t dt 

+ cit +- cti - (s 2 - r 2 + 2irs)[mit +/zit(~)] ~- (s 2 - r 2 - 2irs)[rnji +/xti(~)]}:~ t = 0 .  (18) 

We now exploit  the fact that  when  there  is no  mean  forward  mot ion  all matr ices  are 

symmetr ic ,  i .e. ,  Lit = Lii, c~t = cti, etc. It is then easy to deduce  the fol lowing two equat ions  
f rom (18): 

xi{-2(s2 - r2) fo git(t) e-rt cos(st) dt + 4rS fo  git(t) e-r' sin(st) dt 

+ 2Cii _ 2(S 2 2 } - -  r ) [ m i j  + /-~it(oo)] "ft = O, (19) 

Xi( 2($2- r2) f o  Lit( t) e-rt sin(st) dt + 4rs fo  Lit( t) e-rt c°s(st) dt 

+ 4rs[m~t +/zLit(~)]}~? t = 0 .  (20) 

B e t w e e n  these two equat ions  we m a y  now eliminate first the integrals with cos(st) and next  
the integrals  with sin(st) to  obta in  the following equat ions:  

xi{(s2 + r2)2 fo  L~t(t)e-rtsin(st) dt + 2rscit},ft=O, (21) 

{ fo } 2 2 x i (s z + r2) 2 Lq(t) e - r '  cos(st)  d t  + (s 2 - r2)cij - (s 2 + r ) [mit +/zii(~)] ~?t = 0 .  (22) 

F r o m  (4) we easily find 

Lij(t) = --rr2 f o  s'-laijl, s ) s in(s ' t )  d s '  
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~--- --77"2 y~ []j~ij(S,) - -  J l l , i j ( O ~ ) ]  cos(s ' t )  ds '  . (23) 

If  we substitute the first of these into (21) and integrate with respect to t, we find the 
following equation: 

XiCijX j -t- 2 f f  XiI~ij(St)X._ ] (r2 + s2) ds '  = 0 (24) 
Ir [r 2 + (s + s ')2][r 2 + (s - s ' )  z] 

for  the hypothesized values of  r, s, and xi ,  i E A .  Equation (22) does not seem to lead to 
anything useful for our purpose.  

We now recall that  for a hydrostatically stable floating body the quadratic form x icqE j is 
non-negative,  In fact, if the set A includes only those modes of motion for which there is a 
hydrostatic restoring force, then it is positive. Moreover ,  the radiation condition implies that 
the quadratic form x iAq ( s ' )Y , j>O.  Hence the equation (24) cannot hold, that is, the 
assumption that  the hermitian form Q can be zero for some o- in the upper  half-plane has led 
to a contradiction. Thus Q is positive definite and all the main-diagonal determinants  of  SS*  
are >0 .  But  then also det S ~ 0, which is what we wanted to prove.  A somewhat  weaker  
version of the radiation condition would be sufficient, namely Xi)tij(S)X j ~ 0 but with the > 
holding for at least some intervals of s, so that the integral on the right in (24) is >0.  

We have shown that the radiation condition implies that Tij(t  ) = 0 if t < 0, i.e. that the 
future does not determine the present ,  at least in this particular water-wave problem.  One 
would also like to show the converse,  that if Tij = 0 for t < 0 and for i, j E A for any A,  then 
the radiation condition holds in the weakened form. We have not been able to resolve this 
problem.  

Note  that  the non-negativeness of the buoyancy quadratic form xgc~jEj plays an essential 
role in the proof.  On the other  hand, the positive definiteness of x~rnijE j does not seem to be 

called upon.  

Note :  The material  in this paper  was first presented at the First Workshop on Water  Waves 
and Floating Bodies (1986). The author is much indebted to Mr Gyeong  Joong Lee of the 
Depa r tmen t  of  Naval Architecture of Seoul National University for having pointed out to 
him not  only the inadequacy of the proof  presented at the First Workshop but also of a 
purpor tedly  corrected proof.  The present analysis was presented at the Fourth Workshop 

(1989). 
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